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Short-term stability of patterns in intracavity vectorial second-harmonic generation
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We examine how patterns develop from the point where the plane wave modulational instability sets in. In
particular, it is found that in a certain domain of parameter space square patterns bifurcate stably from this
point. [S1063-651X98)06709-9

PACS numbdrs): 42.65.Sf, 42.65.Ky

Quadratically nonlinear processes have attracted a greathereL = (9%/9X?)+ (d%/dY?), T denotes the timeX and
deal of attention in recent years because of a deeper interegtthe transverse coordinates, andAg are the detunings of
in the nonlinear dynamics of the coupled waves involvedthe fields from the corresponding resonanaeis, the ratio of
especially if transverse effects are included. Among basithe photon lifetimes, and: half the ratio of the refractive
configurations are externally driven planar resonators filledndices correponding to the fundamental and second harmon-
with a quadratically nonlinear medium. If only two frequen- ics. Throughout this analysis we assume #at, which is
cies, i.e., the fundamental and second harmonic, are corx reasonable assumption. The symmetric input at the funda-
cerned, the driving field is at the fundamental in intracavitymental frequency is denoted I
second harmonic generatignp-conversion, SHwhereas First the homogeneous steady state or plane wave solu-
it is at the second harmonic in optical parametric oscillatorsionsA,,, n=1 and 2, and3, of Egs.(1) are considered.
(down-conversion, OPOJs Fundamental transverse effects Equating the derivatives to zero and startingeat0 yields a
are the formation of periodic patterj4—5] and solitary ~ symmetric branch witth ;o= A, which is the same as in the
waves or localized structur¢—9]. Most investigations con-  case of scalar SHG. To determine the stability of this branch
centrated on the scalar case where only two waves are cofve substituteA,=A.o+ dA,expAT+ik-R), n=1 and 2,
sidered. In both configurations, SHG and OPO, the existencgndB = Bo+ 8BexpAT+ik-R), with k= (ky,ky), into Egs.
of hexagonal patternid ] and localized structurg$—8| was (1), and linearize with respect t6A,, B. This gives a
demonstrated. The emergence of roll patterns in the OP@haracteristic equation of the linear problem which is a prod-
was extensively studied in RefL]. uct of a quartic and a quadratic k. Critical points are
Here we consider the case of vectorial intracavity SHGmarked by Re=0. For the solution of the quartic we refer
with the system driven by the two orthogonally polarizedtg Ref.[5]. In particular, fork= 0 the symmetric branch may
fundamental fields at the same frequency. The aim of thigjestabilize and stabilize at a pair of limit points. This is not

work is to analyze which periodic patterns evolve stablyconsidered here. One solution of the quadratic has always
from the point where the plane wave modulational instabilitynegative R, the other is

sets in on the symmetric bran¢bqual fundamental fieldls

This is done by means of amplitude equations from a mul-

tiple scale expansion with respect to this point. Despite the A=—1+|Bo|?— (K*—A,)2. 2
complexity of the evolution equations, it is possible to find

them analytically. The main emphasis is on square patterns.

In a certain domain of parameter space they evolve stablfor k=0 this yields a steady bifurcation whefBo|?=A%
from the point where the modulational instability sets in, + 1. This symmetry breaking bifurcation leads to asymmetric
instead of roll patterns. In optics, stable square patterns wetgranches withA;,# A, [see Fig. 1a) for a bifurcation dia-
observed in a polarization instability devi@€err slice [10],  gram in terms of the control paramete}. The modulational
and unstable ones were calculated in Réfl]. Finally we instability sets in wherdBy|>=1, which corresponds to a
point out the similarities with the OP@calay, whichis also  critical value E2=2(y—ApAg) +(A%+2)AZ+ 92 The
shown to display square patterns. critical wave number i&2=A,, indicating that this modu-
' We assume the sys'gem to be highly resonant for the threl"?ational instability exists only forA,>0 (cf. also Refs.
fields at two frequencies, and apply a mean field theoryé12 13). The fields at this point are

Then the appropriately scaled evolution equations for the™ '~

transmitted fieldsA;, A,, andB of the two fundamental

and the second harmonics are derived as Ay= AzoIE—[AA\/m—AB—i(WF m)],
C

A1 .
'F+(L+AA+')A1+A§B:E'

2
AlO

IA By=— 3
ia—_|_2+(L+AA+i)A2+A’1‘B=E, 0 ®

Here we focus on the point where the modulational insta-

. B .
I(?_T+(aL+AB+|7)B+A1A2_O’ @ bility sets in. To describe the dynamics near this point a
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< 44
+ Geik2~R_ iBOG* e—ik2~R'
0 ! B,=0. (5)
15 The coefficientd= andG are functions of the slow variables
|(b) t= €T, X;=e€Xj, andy;= \/EY,- where the coordinateX;
andY; are parallel and perpendicular to the wave vectors
—= 1.0+ kj, j=1 and 2, respectively. The angle betwégrandk,
< : should obey#> \e. The scaling of the slow variables be-
< g5 comes obvious if Eq(2) is expanded around the critical
point. For example, for one wave vector (k;,0), substi-
| tuting E=E.+ 0E, ky=k.+ ky, and ky=Sky into Eq.
0.0 A ' (2) gives

FIG. 1. (a) Bifurcation diagram displaying the modulus of one = 2E.oE —
fundamental vs the control paramatér Thin solid and dashed ZEE—A,Z,\ Agt+ y?
lines refer to stable and unstable plane wave solutions, respectively.

Bold solid lines refer to modulationally unstable plane wave solu- o .
tions. Open dots mark the amplitude at the center of unstable ond¥hich implies above scaling iBEoc €. Finally, atO(€’) a
dimensional localized structurestripes. The square marks the Solvability condition yields the following amplitude or
symmetry breaking bifurcatior(b) Relative maximum amplitudes Newell-Whitehead-Segal equations for rhombs which con-
of roll patterns(rhombg compared to solutions from E¢Pa) (solid  tain the special case of rolls:

line) with period 2x/k. and bifurcating aE=E_ [ A;o from Eq.(3),

Ap=1, Ag=2,andy=0.5].

1 242
5 (2keoket SkG)2 (6)

JF
— 2 2
multiple scale analysis is performed. Assumifig of O(1) ot = BoB2F —[(2B1+ B2)[F[*+2(B1+ Bat Ba)|GI*]F
and considering small deviationE=E.+ €?E, with E,
==+1, the expansions

g *\°
~ 3| 2ikez—+—| F,
A1:A10+ EA11+ €2A12+ €3A13+ ey 0"Xl ayl

A2:A20+ €A21+ 62A22+ 63A23+ ey JG
E:ﬁOEZG_[(2ﬁ1+BZ)|G|2+ 2(B1+ B3+ Ba)|FI?IG

B=By+ eB;+€?B,+ €Bg+ - - - (4) )12
J
. . - = 5| 2ikem—+—| G, )
are substituted into Eq¢l). Taking into account two wave 2 X2 gy5
vectorsk;, with kj=k; and j=1 and 2, which describes
rhombic patterns, the solution at ordefe) is where the positive constang; are
Bo= 2E,
P (AR VAR Ay~ Ahg) |
2VAZ+ Y2+ y(AY?+2)
B, : - j=1234, ®

CADHAD2+92) + 403+ ¥D) + 4VAZ+ YA (y—ARAY)



PRE 58 BRIEF REPORTS 4007
N N

X

7//
%

FIG. 2. Moduli of the two fundamental and second harmonics
(from left to righy of a roll pattern forA,=1, Ag=2, vy -
=0.5, andE=2.2 (E.=1.785). The scale of the second harmonic
is overemphasized for clarity. The computing window is 45.3
X 45.3 on a 6X 64 grid.

i (1) — 1= (D= A . —aK2 (2) =
with ’ ?3‘)\ Aas AZB Ap, AR (3)AA 4k°2’ Ag"=Ae FIG. 4. Modulus of one fundamental displaying the decay of a
_(%kC’ AR :AA_2k0(1+COS'?21') Ag :AZB_ ke(1+cos6), g pattern forA,=1.5, Ag=2, y=0.5, andE=2.4. The com-
A=Ap—2&(1—cosf), and ALY = Ag—kg(1—cos6). Pat-  puting window is 3% 37 on a 64 64 grid. A 128< 128 grid gives
terns selected at the stage described by EQscorrespond  the same result.
to the nontrivial stable fixed points of these equations. The

nontrivial fixed points are . : . .
P The solution\ ; is due to a phase invariance of the expres-

sions given in Eqs(9a). The solution\, is always negative.
= If B,<2(B3+B4) roll patterns bifurcate stably from the
28+ 8, critical point[cf. Fig. 1(b) for a bifurcation diagram in terms
of E, and Fig. 2 for an examplelf B,>2(B;+B,4) the
solutions\ 3 4 describe the growth of the zero component of
BoE2 a roll solution[cf. Eq. (9a)]. In this case roll patterns bifur-
281+ 85’ cate unstably. Since we find that the growth ratg, is
maximal for #=m/2, we expect square patterns to evolve
BoE near the critical point. Linearizing Eq$7) with respect to
IF|?=|G|?= 0=2 , (9b) Eqg. (9b) shows that squares emanate stably where roll pat-
4B1+ B2+2(B3+ Ba) terns bifurcate unstably. Figure 3 displays an example of a
stable square pattern which evolved from a randomly per-
turbed plane wave background, and Fig. 4 shows the decay

the constantg; are positive, i.e., the bifurcations are super—Of an un;table roll pattern from Eqéd) into a square pat-
critical. tern. Unlike roll patterns, square patterns prevail only in a

Here we examine the short-term stability of uniform pat- relatively narrow stability window, increasing the control pa-

terns with respect to homogeneous perturbations. LinearizinfRMeterE from its critical value. As indicated by E¢5), the
Egs.(7) around the roll solutions, the corresponding characfundamentalA, is maximal whereA, is minimal, and vice

9

&

which correspond to roll and rhombic patterns, respectively
In order to have nontrivial solutiors,=1 is required, since

teristic equation has the following solutions: versa, while the second harmormanakes no contribution at
this order(cf. Figs. 2 and B We find squares existing only
)\1:0, )\2:_2ﬁ0E2, f0r AB>0
It should be noted that the case of hexagon patterns is
— included in above analysi®E 7/3). Starting with
7\3:)\4230E2w (10 vt ’
1 :82

X

FIG. 5. Real part of the fundamental and moduli of the funda-
FIG. 3. Moduli of the two fundamental and second harmonicsmental and second harmonigsom left to right of a square pattern
(from left to right of a square pattern fak,=1.5, Ag=2, vy for Ap=1, Ag=2, y=0.5 andE=2.2 (OPOE.=2.062). The
=0.5, andE=2.4 (E.=1.939). The scale of the second harmonic moduli are in exclusive intervalfundamental (0, 0.55), second
is overemphasized for clarity. The computing window is<37 on harmonic (0.9, 1.15) The computing window is 45:845.3 on a
a 64x 64 grid. 128x 128 grid.



4008 BRIEF REPORTS PRE 58

An=—Ay A .
i—+(L+A5p+i)A+A*B=0,
_ ) _ . . . aT
_Felkl-R_IBOF*eflkl-R_’_ Gelkz-R_IBoG*eflkz-R (12)
B
L HelksR— B H*e kaR, i +(al+Ag+iy)B+A*=E.
B;=0, (11) Here the symmetry breaking bifurcation described above

corresponds to the threshold of down-conversion. The modu-
lational instability sets in on the branch of steady state or

plane wave solutions witth,=0 at E.= \/AZB+ ¥? before

= 7/3. The domain of parameter space where hexagons em 1€ threshpld of d_own-convgrsmn, wher_e dege_nerate
nate stably from the critical point is included in the corre- Pranches withAq#0 bifurcate(with Ao a solution—A, is
sponding domain for squares, but with 4 yielding lower  2lS0 a solution As above, the critical wave number kg
growth rates. ' =A,, with the fieldsA;=0 andBy=E/(Ag+iy) at the

In the example of Fig. (B (Ag>0), the modulational critical point. Starting with an expansion as given in Eg3,
instability terminates on the asymmetric branches at anotheé¥e arrive at amplitude equations for rhombs which are simi-
critical value of E. This bifurcation point is subcritical, lar to Egs.(7), with the constants replaced by
which is indicated by the existence of unstable localized

where k;=(k¢,0), ko=(ko/2,V3k/2), and ks=k,—k;,
instead of Eq(5), the short-term stability is derived from an
expression with the same numerator as Ngp, with 6

structures or solitary waves on a stable plane wave back- Bo= 1 = Y i=1.234. (13
ground emanating from this poiftf. Fig. 1(a) for the case 0 TABJﬂyz’ j Ag)2+72’ i

of stripes, i.e., solitary waves localized in one transverse di-

rection; see also Ref12]]. They can be considered as re- The case of rolls was extensively described in R&f. If

siduals of the different patterns. B>>2(B3+ Ba) they bifurcate unstably from the point where
The above results should be compared to the scalar OP@e modulational instability sets in. The behavior then seems

which behaves very similarly. It is described by the follow- to be similar to the case of vectorial SHG. The growth rate of

ing evolution equations for the fundamental and second hathe zero component of a roll solution of the amplitude equa-

monicsA andB: tions is proportional to

y Ay[(Ag—Ap)%+ y?+ A% cogh]
(Ag—2A,)2+ 9% [(Ag—Ap)2— ¥~ A3c0S01%+4y*(Ag—Ap)?

Bo—2(B3+Ba)= (14

From this, the domain of parameter space where square pa#ith respect to the point where the modulational instability

terns emanate stably from the critical point is calculated asets in, we derived amplitude equations for different periodic
(7TAp— \/4AA2 —992)[3<Ag<(7Ap+ \/4AA2 —99%)/3. Fig- patterns in intracavity vectorial SHG and the scalar OPO. In
ure 5 displays an example of a square pattern in the OP@articular we determined the domain of parameter space
which evolved from a randomly perturbed plane wave backwhere square patterns emanate stably from this point. The
ground. Since R& and ImA are centered around zero,Re stability of square patterns was checked by means of differ-
is plotted also. ent numerical method& split-step fast Fourier transform

In conclusion, by means of a multiple scale expansioralgorithm and a modified Runge-Kutta method
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