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Short-term stability of patterns in intracavity vectorial second-harmonic generation
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~Received 8 April 1998!

We examine how patterns develop from the point where the plane wave modulational instability sets in. In
particular, it is found that in a certain domain of parameter space square patterns bifurcate stably from this
point. @S1063-651X~98!06709-9#

PACS number~s!: 42.65.Sf, 42.65.Ky
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Quadratically nonlinear processes have attracted a g
deal of attention in recent years because of a deeper int
in the nonlinear dynamics of the coupled waves involv
especially if transverse effects are included. Among ba
configurations are externally driven planar resonators fi
with a quadratically nonlinear medium. If only two freque
cies, i.e., the fundamental and second harmonic, are
cerned, the driving field is at the fundamental in intracav
second harmonic generation~up-conversion, SHG! whereas
it is at the second harmonic in optical parametric oscillat
~down-conversion, OPO’s!. Fundamental transverse effec
are the formation of periodic patterns@1–5# and solitary
waves or localized structures@6–9#. Most investigations con-
centrated on the scalar case where only two waves are
sidered. In both configurations, SHG and OPO, the existe
of hexagonal patterns@1# and localized structures@6–8# was
demonstrated. The emergence of roll patterns in the O
was extensively studied in Ref.@1#.

Here we consider the case of vectorial intracavity SH
with the system driven by the two orthogonally polariz
fundamental fields at the same frequency. The aim of
work is to analyze which periodic patterns evolve sta
from the point where the plane wave modulational instabi
sets in on the symmetric branch~equal fundamental fields!.
This is done by means of amplitude equations from a m
tiple scale expansion with respect to this point. Despite
complexity of the evolution equations, it is possible to fi
them analytically. The main emphasis is on square patte
In a certain domain of parameter space they evolve sta
from the point where the modulational instability sets
instead of roll patterns. In optics, stable square patterns w
observed in a polarization instability device~Kerr slice! @10#,
and unstable ones were calculated in Ref.@11#. Finally we
point out the similarities with the OPO~scalar!, which is also
shown to display square patterns.

We assume the system to be highly resonant for the th
fields at two frequencies, and apply a mean field theo
Then the appropriately scaled evolution equations for
transmitted fieldsA1 , A2 , andB of the two fundamenta
and the second harmonics are derived as

i
]A1

]T
1~L1DA1 i !A11A2* B5E,

i
]A2

]T
1~L1DA1 i !A21A1* B5E,

i
]B

]T
1~aL1DB1 ig!B1A1A250, ~1!
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whereL5(]2/]X2)1(]2/]Y2), T denotes the time,X and
Y the transverse coordinates,DA andDB are the detunings o
the fields from the corresponding resonances,g is the ratio of
the photon lifetimes, anda half the ratio of the refractive
indices correponding to the fundamental and second harm
ics. Throughout this analysis we assume thata5 1

2 , which is
a reasonable assumption. The symmetric input at the fun
mental frequency is denoted byE.

First the homogeneous steady state or plane wave s
tions An0 , n51 and 2, andB0 of Eqs.~1! are considered.
Equating the derivatives to zero and starting atE50 yields a
symmetric branch withA105A20 which is the same as in th
case of scalar SHG. To determine the stability of this bran
we substituteAn5An01dAnexp(lT1ik•R), n51 and 2,
andB5B01dBexp(lT1ik•R), with k5(kX ,kY), into Eqs.
~1!, and linearize with respect todAn , dB. This gives a
characteristic equation of the linear problem which is a pr
uct of a quartic and a quadratic inl. Critical points are
marked by Rel50. For the solution of the quartic we refe
to Ref.@5#. In particular, fork50 the symmetric branch may
destabilize and stabilize at a pair of limit points. This is n
considered here. One solution of the quadratic has alw
negative Rel, the other is

l5211AuB0u22~k22DA!2. ~2!

For k50 this yields a steady bifurcation whereuB0u25DA
2

11. This symmetry breaking bifurcation leads to asymme
branches withA10ÞA20 @see Fig. 1~a! for a bifurcation dia-
gram in terms of the control parameterE#. The modulational
instability sets in whereuB0u251, which corresponds to a
critical value Ec

252(g2DADB)1(DA
212)ADB

21g2. The
critical wave number iskc

25DA , indicating that this modu-
lational instability exists only forDA.0 ~cf. also Refs.
@12,13#!. The fields at this point are

A105A205
1

Ec
@DAADB

21g22DB2 i ~g1ADB
21g2!#,

B052
A10

2

DB1 ig
. ~3!

Here we focus on the point where the modulational ins
bility sets in. To describe the dynamics near this poin
4005 © 1998 The American Physical Society
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multiple scale analysis is performed. AssumingDA of O(1)
and considering small deviationsE5Ec1e2E2 with E2
561, the expansions

A15A101eA111e2A121e3A131•••,

A25A201eA211e2A221e3A231•••,

B5B01eB11e2B21e3B31••• ~4!

are substituted into Eqs.~1!. Taking into account two wave
vectorsk j , with kj5kc and j 51 and 2, which describe
rhombic patterns, the solution at orderO(e) is

FIG. 1. ~a! Bifurcation diagram displaying the modulus of on
fundamental vs the control paramaterE. Thin solid and dashed
lines refer to stable and unstable plane wave solutions, respecti
Bold solid lines refer to modulationally unstable plane wave so
tions. Open dots mark the amplitude at the center of unstable
dimensional localized structures~stripes!. The square marks the
symmetry breaking bifurcation.~b! Relative maximum amplitudes
of roll patterns~rhombs! compared to solutions from Eq.~9a! ~solid
line! with period 2p/kc and bifurcating atE5Ec @A10 from Eq.~3!,
DA51, DB52, andg50.5].
A1152A21

5Feik1•R2 iB0F* e2 ik1•R

1Geik2•R2 iB0G* e2 ik2•R,

B150. ~5!

The coefficientsF andG are functions of the slow variable
t5e2T, xj5eXj , andyj5AeYj where the coordinatesXj
and Yj are parallel and perpendicular to the wave vect
k j , j 51 and 2, respectively. The angle betweenk1 andk2

should obeyu@Ae. The scaling of the slow variables be
comes obvious if Eq.~2! is expanded around the critica
point. For example, for one wave vectork5(kc ,0), substi-
tuting E5Ec1dE, kX5kc1dkX , and kY5dkY into Eq.
~2! gives

l5
2EcdE

2Ec
22DA

2ADB
21g2

2
1

2
~2kcdkX1dkY

2 !2, ~6!

which implies above scaling ifdE}e2. Finally, at O(e3) a
solvability condition yields the following amplitude o
Newell-Whitehead-Segal equations for rhombs which c
tain the special case of rolls:

]F

]t
5b0E2F2@~2b11b2!uFu212~b11b31b4!uGu2#F

2
1

2S 2ikc

]

]x1
1

]2

]y1
2D 2

F,

]G

]t
5b0E2G2@~2b11b2!uGu212~b11b31b4!uFu2#G

2
1

2S 2ikc

]

]x2
1

]2

]y2
2D 2

G, ~7!

where the positive constantsb j are

ly.
-
e-
b05
2Ec

~DA
214!ADB

21g214~g2DADB!
,

b j5
2ADB

21g21g~DA
~ j !212!

DA
~ j !2~DB

~ j !21g2!14~DB
21g2!14ADB

21g2~g2DA
~ j !DB

~ j !!
, j 51,2,3,4, ~8!
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with DA
(1)5DA , DB

(1)5DB , DA
(2)5DA24kc

2 , DB
(2)5DB

22kc
2, DA

(3)5DA22kc
2(11cosu), DB

(3)5DB2kc
2(11cosu),

DA
(4)5DA22kc

2(12cosu), and DB
(4)5DB2kc

2(12cosu). Pat-
terns selected at the stage described by Eqs.~7! correspond
to the nontrivial stable fixed points of these equations. T
nontrivial fixed points are

uFu25
b0E2

2b11b2
, G50,

~9a!

uGu25
b0E2

2b11b2
, F50

uFu25uGu25
b0E2

4b11b212~b31b4!
, ~9b!

which correspond to roll and rhombic patterns, respectiv
In order to have nontrivial solutionsE251 is required, since
the constantsb j are positive, i.e., the bifurcations are supe
critical.

Here we examine the short-term stability of uniform p
terns with respect to homogeneous perturbations. Lineari
Eqs.~7! around the roll solutions, the corresponding char
teristic equation has the following solutions:

l150, l2522b0E2 ,

l35l45b0E2

b222~b31b4!

2b11b2
. ~10!

FIG. 2. Moduli of the two fundamental and second harmon
~from left to right! of a roll pattern for DA51, DB52, g
50.5, andE52.2 (Ec51.785). The scale of the second harmon
is overemphasized for clarity. The computing window is 45
345.3 on a 64364 grid.

FIG. 3. Moduli of the two fundamental and second harmon
~from left to right! of a square pattern forDA51.5, DB52, g
50.5, andE52.4 (Ec51.939). The scale of the second harmon
is overemphasized for clarity. The computing window is 37337 on
a 64364 grid.
e
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The solutionl1 is due to a phase invariance of the expre
sions given in Eqs.~9a!. The solutionl2 is always negative.
If b2,2(b31b4) roll patterns bifurcate stably from th
critical point @cf. Fig. 1~b! for a bifurcation diagram in terms
of E, and Fig. 2 for an example#. If b2.2(b31b4) the
solutionsl3,4 describe the growth of the zero component
a roll solution@cf. Eq. ~9a!#. In this case roll patterns bifur
cate unstably. Since we find that the growth ratel3,4 is
maximal for u5p/2, we expect square patterns to evol
near the critical point. Linearizing Eqs.~7! with respect to
Eq. ~9b! shows that squares emanate stably where roll p
terns bifurcate unstably. Figure 3 displays an example o
stable square pattern which evolved from a randomly p
turbed plane wave background, and Fig. 4 shows the de
of an unstable roll pattern from Eqs.~9a! into a square pat-
tern. Unlike roll patterns, square patterns prevail only in
relatively narrow stability window, increasing the control p
rameterE from its critical value. As indicated by Eq.~5!, the
fundamentalA1 is maximal whereA2 is minimal, and vice
versa, while the second harmonicB makes no contribution a
this order~cf. Figs. 2 and 3!. We find squares existing only
for DB.0.

It should be noted that the case of hexagon pattern
included in above analysis (u5p/3). Starting with

s

s

FIG. 4. Modulus of one fundamental displaying the decay o
roll pattern forDA51.5, DB52, g50.5, andE52.4. The com-
puting window is 37337 on a 64364 grid. A 1283128 grid gives
the same result.

FIG. 5. Real part of the fundamental and moduli of the fund
mental and second harmonics~from left to right! of a square pattern
for DA51, DB52, g50.5, andE52.2 (OPO,Ec52.062). The
moduli are in exclusive intervals@fundamental (0, 0.55), secon
harmonic (0.9, 1.15)#. The computing window is 45.3345.3 on a
1283128 grid.
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A1152A21

5Feik1•R2 iB0F* e2 ik1•R1Geik2•R2 iB0G* e2 ik2•R

1Heik3•R2 iB0H* e2 ik3•R,

B150, ~11!

where k15(kc ,0), k25(kc/2,A3kc/2), and k35k22k1 ,
instead of Eq.~5!, the short-term stability is derived from a
expression with the same numerator as inl3,4 with u
5p/3. The domain of parameter space where hexagons e
nate stably from the critical point is included in the corr
sponding domain for squares, but withl3,4 yielding lower
growth rates.

In the example of Fig. 1~a! (DB.0), the modulational
instability terminates on the asymmetric branches at ano
critical value of E. This bifurcation point is subcritical
which is indicated by the existence of unstable localiz
structures or solitary waves on a stable plane wave ba
ground emanating from this point@cf. Fig. 1~a! for the case
of stripes, i.e., solitary waves localized in one transverse
rection; see also Ref.@12##. They can be considered as r
siduals of the different patterns.

The above results should be compared to the scalar O
which behaves very similarly. It is described by the follow
ing evolution equations for the fundamental and second
monicsA andB:
p
a

P
ck

io

A

A.
a-

er

d
k-

i-

O,

r-

i
]A

]T
1~L1DA1 i !A1A* B50,

~12!

i
]B

]T
1~aL1DB1 ig!B1A25E.

Here the symmetry breaking bifurcation described abo
corresponds to the threshold of down-conversion. The mo
lational instability sets in on the branch of steady state
plane wave solutions withA050 at Ec5ADB

21g2 before
the threshold of down-conversion, where degener
branches withA0Þ0 bifurcate~with A0 a solution2A0 is
also a solution!. As above, the critical wave number iskc

2

5DA , with the fieldsA050 and B05E/(DB1 ig) at the
critical point. Starting with an expansion as given in Eqs.~4!,
we arrive at amplitude equations for rhombs which are si
lar to Eqs.~7!, with the constants replaced by

b05
1

ADB
21g2

, b j5
g

DB
~ j !21g2

, j 51,2,3,4. ~13!

The case of rolls was extensively described in Ref.@1#. If
b2.2(b31b4) they bifurcate unstably from the point wher
the modulational instability sets in. The behavior then see
to be similar to the case of vectorial SHG. The growth rate
the zero component of a roll solution of the amplitude eq
tions is proportional to
b222~b31b4!5
g

~DB22DA!21g2
2

4g@~DB2DA!21g21DA
2 cos2u#

@~DB2DA!22g22DA
2cos2u#214g2~DB2DA!2

. ~14!
ity
dic
. In
ace
The
fer-
From this, the domain of parameter space where square
terns emanate stably from the critical point is calculated
(7DA2A4DA

229g2)/3,DB,(7DA1A4DA
229g2)/3. Fig-

ure 5 displays an example of a square pattern in the O
which evolved from a randomly perturbed plane wave ba
ground. Since ReA and ImA are centered around zero, ReA
is plotted also.

In conclusion, by means of a multiple scale expans
at-
s

O
-

n

with respect to the point where the modulational instabil
sets in, we derived amplitude equations for different perio
patterns in intracavity vectorial SHG and the scalar OPO
particular we determined the domain of parameter sp
where square patterns emanate stably from this point.
stability of square patterns was checked by means of dif
ent numerical methods~a split-step fast Fourier transform
algorithm and a modified Runge-Kutta method!.
ev.
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